

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.1.061

ESTIMATE OF CORRELATION AND PATH COEFFICIENT ANALYSIS FOR ECONOMIC TRAITS IN FENUGREEK (TRIGONELLA FOENUM -GRAECUM L.)

Archana Upadhyay, Neetu*, S.V. Dwivedi, D.K. Singh, M.K. Singh and Kalyan Singh

Banda University of Agriculture and Technology, Banda - 210 001 (U.P.), India. *Corresponding author E-mail : nitubhu2009@gmail.com (Date of Receiving-25-11-2024; Date of Acceptance-12-02-2025)

The experiment was conducted to estimate the correlation and path coefficient analysis for economic traits in twenty genotypes of fenugreek with three replications in Randomized Block Design (RBD) with during Rabi season in 2021-22 at Vegetable Research Farm at College of Horticulture, Banda University of Agriculture and Technology, Banda-210001, Uttar Pradesh. The data were recorded on twelve characters for different economic traits in fenugreek. Analysis for inter-relationship between different characters show that days to 50% flowering showed positive and significant correlation with days to maturity whereas negative and significant correlation with plant height, test weight and seed yield per plot (g). Number of branches per plant exhibited positive and significant correlation with pod length (0.501), seeds per with seed yield per plot (0.603). Number of seeds per pod showed significant and positive correlation with seed yield per plot (0.239)at 5% level of significance while it showed highly significant and positive correlation with pod length (0.933) and highly significant and negative correlation with test weight (-0.562). Pod length showed significant and positive correlation with seed yield per plot (0.385) and it showed significant and negative correlation with test weight (-0.380) at both level of significance. Days to maturity showed highly significant and positive correlation with days to 50% flowering (1.253) and it showed highly significant and negative correlation with plant height (-0.751), seed yield per plot (0.330). Test weight showed highly significant and negative correlation **ABSTRACT** with no of seeds per pod (-0.562), days to 50% flowering (-0.512) and pod length (-0.380) and it showed highly significant and positive correlation with seed yield per plot (0.430). The most important character seed yield per plot showed highly significant but negative correlation with days to 50% flowering (-0.330), and it showed highly significant and positive correlation with plant height (0.490), no of pods per plant (0.603), pod length (0.385) and test weight (0.590). Seeds per pod showed highly significant and positive correlation with pod length (0.933) and it showed highly significant and negative correlation with test weight (0.933). Higher magnitude of positive direct effect on seed yield per plot was found in test weight (1.336), plant height (1.012), no. of branches per plant (0.678), no of seeds per pod (0.651) and protein content (0.401). Positive direct effect of remaining traits was found low. In contrast, negative pod (0.478) and it was found significantly but negatively correlated with test weight (-305) and total protein content (-601). Number of pods per plant showed positive and significant correlation direct effect on seed yield per plot was found for pods per plant (-1.056), pod length (-0.731). Regarding indirect effects days to 50% flowering (0.472) via days to maturity, plant height (0.570) via test weight showed indirect effect on seed yield.

Key words : Correlation, Path, Coefficient, RBD.

Introduction

Fenugreek (*Trigonella foenum-graecum* L.), is selfpollinated, annual and one of the oldest medicinal spices belong to the family Leguminaceae with diploid chromosome number (2n=2x=16) and originated in Mediterranean region, Southern Europe and Western Asia. Its vernacular names called Methi (Hindi). The *Trigonella*, derived from *Latin* language that means "little triangle" due to its yellowish-white triangular flowers (Flammang *et al.*, 2004). It is commercially cultivated in India, Pakistan, Afghanistan, Iran, Nepal, Egypt, France, Spain, Turkey, Morocco, North Africa, Middle East and Argentina. Fenugreek seed, leaves renowned for their distinct aroma that slightly bitter in taste. The genus Trigonella have 50 species & only two are cultivated species, that is Trigonella foenum- graecum L commonly called "Methi" and Trigonella corniculata L. called "Kasuri Methi". Fenugreek seeds and leaves are widely used in cooking, particularly in Indian, Middle Eastern, and North African cuisines. Many health benefits, including better digestion, decreased inflammation, increased milk supply in nursing mothers, and blood sugar regulation, are thought to be associated with it. Many health benefits, many health benefits, including better digestion, decreased inflammation, increased milk supply in nursing mothers, and blood sugar regulation, are thought to be associated with it. Many health benefits, including better digestion, decreased inflammation, increased milk supply in nursing mothers, and blood sugar regulation, are thought to be associated with it.

It is commercially cultivated in India, Pakistan, Afghanistan, Iran, Nepal, Egypt, France, Spain, Turkey, Morocco, North Africa, Middle East and Argentina. India leads the world in both area and production. According to NHB estimates, fenugreek has an area of 122000 ha and a production of 189000 MT in 2018–2019.

The correlation coefficient provides knowledge about the different relationships existing between yield and yield components. It only discloses the direct and magnitude of associations existing between any two characters but the path coefficient analysis helps in dividing the correlation into direct and indirect effects of various components on yield. Path coefficient analysis describes cause and effect relationship between the variables which is unique in splitting the relationship into direct and indirect effects through other variables. Path analysis provides the information of great value to the breeder which helps in identifying the component traits of seed yield per plot.

Materials and Methods

There is total 20 genotypes of fenugreek collected from locally adapted and different research Institutes & SAU. Number of replications is three & Experiment done in Randomized Block Design. The detailed description of the parental lines is given in layout. The experiment was conducted in semi-arid or semi tropics climate of Bundelkhand region at Vegetable Research Farm at College of Horticulture, Banda University of Agriculture and Technology, Banda, Uttar Pradesh during *Rabi* season 2021-22. The distance between row to row and plant to plant is 30m and 10m, respectively. Five plants were randomly selected from each plot of experimental trial and tagged before flowering to investigate on different characters under study. Parameter recorded during the experiment is Days to 50 per cent flowering, Plant height (cm), Number of shoots per plant, Days to maturity, Number of pods per plant, Length of pod (cm), Number of seeds per pod, 1000 seed weight (g), Seed yield per plant (g), Total sugar content (%), Total protein content (%), Total tannin content(mg/100g).

Results and Discussion

In present investigation, genotypic correlation and phenotypic correlation, genotypic correlation is more reliable. Days to 50 % flowering showed positive and significant correlation with days to maturity whereas negative and significant correlation with plant height, test weight and seed yield per plot (g). Number of branches per plant exhibited positive and significant correlation with pod length (0.501), seeds per pod (0.478) and it was found significantly but negatively correlated with test weight (-305) and total protein content (-601). Number of pods per plant showed positive and significant correlation with seed yield per plot (0.603). Number of seeds per pod showed significant and positive correlation with seed yield per plot (0.239) at 5% level of significance. While it showed highly significant and positive correlation with pod length (0.933) and highly significant and negative correlation with test weight (-0.562). Pod length showed significant and positive correlation with seed yield per plot (0.385) and it showed significant and negative correlation with test weight (-0.380) at both level of significance. Days to maturity showed highly significant and positive correlation with days to 50% flowering (1.253) and it showed highly significant and negative correlation with plant height (-0.751), seed yield per plot (0.330). Test weight showed highly significant and negative correlation with no of seeds per pod (-0.562), days to 50% flowering (-0.512) and pod length (-0.380) and it showed highly significant and positive correlation with seed yield per plot (0.430). The most important character seed yield per plot showed highly significant but negative correlation with days to 50% flowering (-0.330), and it showed highly significant and positive correlation with plant height (0.490), no of pods per plant (0.603), pod length (0.385) and test weight (0.590). Seeds per pod showed highly significant and positive correlation with pod length (0.933) and it showed highly significant and negative correlation with test weight (0.933). Days to 50% flowering showed highly significant and positive correlation with days to maturity (Mamatha et al., 2017). It had negative correlation with seed yield per plot. Similar results were reported by Wojo et al. (2016). Plant height

Traits	Days taken to	Plant height	Number of	Number of pods	Number of seeds	Pod length	Test weight	Days taken to	Total sugar	Protein content in	Tannin content in	Seed yield per plot
	50% flowering	(cm)	branches per plant	per plant	perpod	(cm)	(g)	maturity	content in seed %	seed %	seed mg/100g	(g)
Days taken to 50% flowering	1.000	-0.867**	-0.012	0.206	0.173	-0.107	-0.512**	1.253**	-0.128	-0.290*	-0.266*	-0.330**
Plant height (cm)		1.000	0.265*	-0.029	0.191	0.504**	0.426**	-0.751**	-0.337**	0.244	0.122	0.490^{**}
Number of branches per plant			1.000	0.116	0.478**	0.501**	-0.305*	0.066	-0.092	-0.601**	0.034	0.206
Number of pods per plant				1.000	0.274*	-0.095	0.261*	0.308*	-0.186	0.048	0.064	0.603**
Number of seeds per pod					1.000	0.933**	-0.562**	0.089	-0.380**	-0.069	-0.095	0.239*
Pod length (cm)						1.000	-0.380**	-0.085	-0.309*	-0.005	060.0	0.385**
Test weight (g)							1.000	-0.650**	0.190	0.186	0.275*	0.590**
Days taken to maturity								1.000	-0.275*	-0.333**	-0.058**	-0.190
Total sugar content in seed%									1.000	0.010	-0.043	-0.097
Protein content in seed %										1.000	0.000	0.147
Tannin content in seed mg/100g											1.000	0.249

showed positive and significant correlation with pod length, test weight and seed yield per plot. Similar results were reported by Singh et al. (2013), this indicates that plant height is an important trait and it can be directly improved by selecting these characters. No of branches per plant showed positive and significant correlation with seeds per pod (Wojo et al., 2016). So, it indicates that no of branches per plant is an important character for seed yield, can be improved by selecting the associated characters. No. of pods per plant showed positive and significant correlation with seed yield per plot. This indicate that no of pods per plant is an important yield contributing character and yield will ultimately increase if breeder selects the genotype having maximum no of plants. Similar results are reported by Prajapati et al. (2010), No of seeds per pod showed positive and significant correlation with seed vield per plot (Prajapati et al., 2012), pod length and significant negative correlation with test weight. Test weight was positively and significantly correlated with seed yield per plot (Mamatha et al., 2017). This indicates that selection for this trait would directly improve the seed yield. Rest of the traits low effects on main characters. The most important character seed yield per plot showed positive correlation with plant height, no of pods per plant, no of seeds per pod, pod length and test weight. These results are in accordance with Mamatha et al. (2017). Thus it can be concluded that selection of these traits will positively influence the seed yield.

Path coefficient

The path coefficient analysis was derived through genotypic correlation coefficient and

 Table 1 : Estimates of Genotypic correlation coefficient between twelve characters.

g (g) (g) (g) (g) (g) (g) (g) (g) (g) (g	Im per plot g (g) -0.315* 0.327* 0.139 0.417**	in perplot (g) -0.315* 0.327* 0.139 0.139 0.193	Im per plot (g) (g) -0.315* -0.315* 0.327* 0.139 0.139 0.139 0.193 0.193 0.193 0.221 0.221 0.221	In per plot (g) (g) -0.315* -0.315* 0.139 0.139 0.139 0.139 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193	Im per plot (g) -0.315* -0.315* 0.139 0.139 0.139 0.139 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.021 0.221 0.059 -0.074	In per plot (g) (g) -0.315* -0.315* 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.193 0.193 0.193 0.193 0.125 0.125
mg/100g	mg/100g * -0.258* 0.087 ** ** 0.037	* -0.258* ** 0.030 ** 0.030 ** 0.037 0.037	mg/100g * -0.258* 0.087 0.087 0.030 0.037 -0.031 0.037 0.0037 0.037 0.0037 0.037 0.0037 0.037 0.0037 0.037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037	mg/100g * -0.258* 0.087 0.087 0.030 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	mg/100g mg/100g mg/100g 0.087 0.030 -0.031 0.037 0.041	mg/100g mg/100g mg/100g mg/100g 0.037 0.037 0.037 0.037 0.031
	11 -0.280* 88 0.118 55 -0.514** 77 -0.003	11 -0.280* 88 0.118 55 -0.514** 77 -0.003 11* -0.041	11 -0.280* 88 0.118 85 -0.514** 17 -0.003 11* -0.003 11* -0.003 13 0.155	11 -0.280* 8 0.118 85 -0.514** 11* -0.003 11* -0.003 11* -0.003 11* -0.003 11* -0.014 11* -0.014 11* -0.014 11* -0.014 11* -0.014	11 -0.280* 8 0.118 85 -0.514** 11* -0.003 11* -0.003 11* -0.003 11* -0.003 11* -0.014 11* -0.014 11* -0.014 11* -0.014 11* -0.014	11 -0.280* 88 0.118 85 -0.514** 11* -0.003 11* -0.003 11* -0.014 11* -0.014 11* -0.014 11* -0.014
171.0-	.420** -0.238 094 -0.085 027 -0.027	.420** -0.238 094 -0.238 027 -0.027 309* -0.311*	.420** -0.238 094 -0.085 027 -0.027 309* -0.311* 124 -0.224 124 0.163	.420** -0.238 094 -0.085 027 -0.085 309* -0.311* 124 -0.224 124 -0.224 124 0.163 000 -0.167	.420** -0.238 094 -0.085 095 -0.085 309* -0.311* 309* -0.311* 124 -0.224 124 0.163 000 -0.167 1.000 1.000	.420** -0.238 .94 -0.238 .094 -0.085 .027 -0.027 .027 -0.24 .241 0.163 .000 -0.167 1.000 1.000
	0.342 ^{**} -0.444 -0.251 0.094 0.025 0.027	0.342** -0.4424 -0.251 -0.094 -0.025 -0.027 -0.432** 0.309	0.342** -0.442 -0.251 0.094 -0.251 0.094 0.025 0.027 -0.432** 0.309 -0.223 0.124 1.000 -0.241	0.342** -0.42(-0.342) -0.342 -0.342(-0.35) -0.094 -0.309 -0.309 -0.309 -0.309 -0.309 -0.309 -0.301 -	0.342** -0.444	0.342**0.42(-0.342)0.3420.342)0.250.3090.3090.3090.3090.2410.2230.2410.2
0.127 0.	0.507** -0	0.507** -0 -0 -0.173 0. 0. 0.592** -0 0. 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592** -0 0.592*** -0 0.592*** -0 0.592*** -0 0.592*** -0 0.592*** -0 0.592************************************	0.507** -0 -0.173 0. 0.592** -0 1.000 -0	0.507** -0 -0.173 0. 0.592** -0 1.000 -0 1.	0.507** -0 -0.173 0. 0.592** -0 1.000 -0 1.	0.507** -0 -0.173 0. 0.592** -0 1.000 -0 1.
0.036	0.433**	0.433** -0.097 1.000	0.433** -0.097 1.000	0.433**	0.433**	0.433**
0.041	-0.010 1.000	-0.010 1.000	-0.010 1.000	-0.010 	01000 II IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
0.124	T-UUU	Trann				
-0000-						
0000-T						
Plant height (cm) Number of branches	per plant Number of pods	per plant Number of pods per plant Number of seeds per pod	per plant Number of pods per plant Number of seeds per pod Pod length (cm) Test weight (g)	per plant Number of pods per plant Number of seeds per pod Pod length (cm) Test weight (g) Days taken to maturity	per plant Number of pods per plant Number of seeds per pod Pod length (cm) Test weight (g) Days taken to maturity Total sugar content in seed%	per plant Number of pods per plant Number of seeds per pod Pod length (cm) Test weight (g) Days taken to maturity Total sugar content in seed% Protein content in seed %

Table 2 : Estimates of phenotypic correlation coefficient for twelve characters in fenugreek.

Seed yield per plot (g)	-0.621**	0.811**	0.025	-0.313*	0.014	0.202	0.430**	-0.492**	-0.120	0.401**	-0.171
Tannin content in seed mg/100g	0.114	-0.053	-0.077	-0.028	0.041	-0.035	-0.119	-0.019	0.018	0.044	-0.432
Protein content in seed %	-0.143	0.227	0.055	0.037	-0.006	-0.002	-0.040	-0.051	-0.177	0.383	-0.039
Total sugar content in seed %	-0.041	-0.110	-0.061	-0.061	-0.118	-0.091	0.062	-0.064	0.326	-0.151	-0.014
Days taken to maturity	0.472	-0.415	-0.113	0.273	-0.032	0.125	-0.297	0.851	-0.166	-0.112	0.038
Test weight (g)	-0.674	0.570	-0.535	0.348	-0.717	-0.427	1.336	-0.465	0.253	-0.141	0.367
Pod length (cm)	0.049	-0.280	-0.281	0.161	-0.582	-0.731	0.233	-0.108	0.204	0.003	-0.059
Number of seeds per pod	0.101	0.103	0.237	-0.175	0.651	0.518	-0.350	-0.024	-0.236	-0.011	-0.061
Number of pods per plant	-0.174	0.030	-0.193	-1.056	0.284	0.233	-0.275	-0.339	0.197	-0.103	-0.068
Number of branches per plant	-0.003	0.212	0.678	0.124	0.247	0.260	-0.271	060.0-	-0.128	960.0	0.121
Plant height (cm)	-0.881	1.012	0.317	-0.029	0.160	0.388	0.432	-0.493	-0.341	0.599	0.123
Days taken to 50 % flowering	0.558	-0.486	-0.002	0.092	0.087	-0.037	-0.282	0.310	-0.070	-0.208	-0.147
Traits	Days taken to 50% flowering	Plant height (cm)	Number of branches per plant	Number of pods per plant	Number of seeds per pod	Pod length (cm)	Test weight (g)	Days taken to maturity	Total sugar content in seed%	Protein content in seed %	Tannin content in seed mg/100g

Table 3 : Phenotypic Path coefficient analysis for twelve characters in fenugreek.

Table 4 : Genotypic P.	ath coefficien	nt analysis fc	or twelve cha	uracters in fe	nugreek.							
Traits	Days taken to 50% flowering	Plant height (cm)	Number of branches per plant	Number of pods per plant	Number of seeds per pod	Pod length (cm)	Test weight (g)	Days taken to maturity	Total sugar content in seed %	Protein content in seed %	Tannin content in seed mg/100g	Seed yield per plot (g)
Days taken to 50% flowering	-0.234	0.041	-0.001	-0.006	-0.009	-0.027	-0.209	-0.108	0.005	-0.100	0.083	-0.565**
Plant height (cm)	0.152	-0.063	0.007	-0.004	-0.005	0.097	0.152	0.065	0.010	0.113	-0.028	0.497**
Number of branches per plant	0.004	-0.012	0.039	-0.011	-0.014	0.095	-0.094	0.027	0.007	0.030	-0.036	0.036
Number of pods per plant	-0.015	-0.003	0.005	-0.089	0.006	-0.026	0.011	-0.036	0.001	0.012	-0.012	-0.145
Number of seeds per pod	-0.033	-0.004	0.008	600:0	-0.066	0.296	-0.205	0.008	0.014	-0.003	0.026	0.049
Pod length (cm)	0.016	-0.015	600.0	0.006	-0.049	0.399	-0.133	-0.028	0.011	0.001	-0.025	0.191
Test weight (g)	0.110	-0.021	-0.008	-0.002	0.030	-0.119	0.444	0.064	-0.007	-0.028	-0.080	0.383**
Days taken to maturity	-0.126	0.020	-0.005	-0.016	0.003	0.056	-0.141	-0.201	0.008	-0.036	-0.014	0.452**
Total sugar content in seed%	0.028	0.015	-0.007	0.002	0.022	-0.103	0.073	0.039	-0.043	-0.123	0.013	-0.083
Protein content in seed %	0.086	-0.026	0.004	-0.004	0.001	0.001	-0.045	0.027	0.019	0.272	0.032	0.367**
Tannin content in seed mg/100g	0.061	-0.005	0.004	-0.003	0.005	0.032	0.111	-0.00	0.002	-0.027	-0.320	-0.150

fen	
Ξ.	
characters	
twelve	
for	
vsis	
anal	•
coefficient	
Path	
notypic	-
Ğ	
Table 4 :	

phenotypic correlation coefficients to determine how all the parameters affect directly or indirectly seed yield per plant. Genotypic path coefficient was found greater than phenotypic path coefficient for all the traits and more reliance is placed over genotypic path coefficient analysis. Higher magnitude of positive direct effect on seed yield per plot was found in test weight (1.336), plant height (1.012), No. of branches per plant (0.678), no of seeds per pod (0.651) and protein content (0.401). Positive direct effect of remaining traits was found low. In contrast, negative direct effect on seed yield per plot was found for pods per plant (-1.056), pod length (-0.731). Regarding indirect effects days to 50% flowering (0.472) via days to maturity, plant height (0.570) via test weight showed indirect effect on seed yield. Effect of rest of the traits is low. Path analysis technique was developed by Wright (1921) and demonstrated by Dewey and Lu (1959). Path coefficient splits the correlation coefficient into direct and indirect effects of different traits on yield. Plant height, no of branches per plant, no of seeds per pod, protein content, test weight and days taken to maturity has positive and direct effect on seed yield per plot at both genotypic and phenotypic levels (Fikreselassie et al., 2012) in fenugreek. This result indicates that by selecting these traits direct improvement in seed yield of fenugreek is possible. Regarding indirect effect days to 50% flowering, plant height and days to maturity contributed to seed yield.

Conclusion

The most important character seed yield per plot exhibited significant and positive correlation with plant height, no of pods per plant, no of seeds per pod and test weight. Estimates of Path coefficient analysis at genotypic and phenotypic level indicated that test weight and plant height had maximum significant direct positive effect on seed yield per plot.

Acknowledgement

The authors are cordially thankful to the Department of Vegetable Science, College of Horticulture, Banda University of Agriculture and Technology, Banda for providing necessary facilities to conduct experimental trials with financial supported.

References

Anonymous (2019). Horticulture Database, National Horticulture Board, Department of Agriculture and Farmers Welfare, Government of India, Gurugram, Haryana, India.

- Ayanoglu, F., Arslan M. and Mert A. (2004). Correlation and path analysis of the relationship between yield and yield components in fenugreek (*Trigonella foenicum- graecum* L.). *Turkish J. Field Crops*, 9(1), 11-15.
- Dashora, A., Maloo S.R. and Dashora L.K. (2011). Variability, correlation and path coefficient analysis in fenugreek (*Trigonella foenum-graecum* L.) under water limited condition. J. Spices Aromatic Crops, **20** (1), 38-42.
- Fikreselassie, M., Zeleke H. and Alemayehu N. (2012). Correlation and path analysis in Ethiopian fenugreek (*Trigonella foenum-graecum* L.) landraces. *Ceown Research in Education*, **2**, 132-142.
- Flaming A., Cifone M., Erexson G. and Stankowski L. (2004). Genotoxicity testing of a fenugreek extract. *Food Chem. Toxicol.*, **11**, 1769–1775.
- Gangopadhyay, K.K., Yadav S.K., Kumar G, Meena B.L., Mahajan R.K. and Mishra S.K. (2009). Correlation, Path coefficient and genetic diversity pattern in fenugreek (*Trigonella foenum-graecum* L.). *Indian J. Agricult. Sci.*, **79** (7), 521-526.
- Lodhi, P.S., Singh P.P., Naruka I.S., Kushwah S.S. and Singh A.K. (2015). Genetic variability, correlation and path analysis in fenugreek (*Trigonella foenum-graecum* L.). *Indian J. Horticult.*, **72** (3), 429-433.
- Patahk, A.R., Patel A.I., Joshi H.K. and Patel D.A. (2014). Genetic variability, correlation and path coefficient analysis in fenugreek (*Trigonella foenum-graecum* L.). *Trends in Biosciences*, 7(4), 234-237.
- Sharma, K.C. and Sastry E.V.D. (2008). Path analysis for seed yield and its component characters in fenugreek (*Trigonella foenum-graecum L.*). J. Spices Aromatic Crops, **17**(2), 69-74.
- Singh, S.P. and Pramila (2009). Correlation and path analysis in fenugreek (*Trigonella foenum-graecum* L.). Asian J. Horticult., 4(1), 105-107.
- Singh, B., Singh G and Pandey V.P. (2012). Path analysis for seed yield and its component characters in fenugreek (*Trigonella foenum-graecum* L). New Agriculturist, 23(2), 185-187.
- Singh, K.P., Nair B., Jain P.K. and Sengupta S.K. (2013). Correlation studies in fenugreek (*Trigonella foenum-graecum L.*). Afr. J. Agricult. Res., 8(38), 4773-4779.
- Singh, P.P., Gujar M. and Naruka I.S. (2016). Association and path analysis in fenugreek (*Trigonella foenum - graecum*). *Indian J. Agricult. Sci.*, 86(7), 951-955.
- Yadav, Y., Yadava P.S., Pandey V.P. and Kumar A. (2013). Genetic variability, correlation and path co-efficient analysis studies in fenugreek (*Trigonella foenum-graecum* L.). *Asian J. Horticult.*, 8(2), 456-459.